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An imrortant problem associated with any missiorn invelving a space-
craft or airceaft is that of correcting path ervors in such + manner that
prescribea terminal conditions which define successful completion of the mis-
sion are satisfied. Determination of these corrections is referred to as
guidance. Manv vehicles must be controlled by automatic or semi-automatic
devices which operate without the direct intervention of a man. For non-
tracked vehicles, these devices must control the path and speed of the vehicle.
It is this type of vehicle (spacecraft or aircraft) which will be considered.
There are several definite steps in the solution of the guidance problem.
First, a nominal trajectory must be defined. Next, the errors in a current
state can be evaluated by comparison to the nominal trajectory. Using infor-
mation from the nominal trajectory plus the known state errors, guidance in-
formation can be generated to drive the terminal state toward the desired end
conditions.

This studv compares two variations of the minimum distance guidance
algorithm (open and closed loop forms) with a nonlinear reoptimization scheme
which is the ideal guidance procedu-e. This study seceks to determine the ef-
fects of loop closure on the performance of the guidance algorithm. For the
numerical simulation, a minimum time low-thrust Earth-Mars transfer is used
as an example problem.
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Fowler for serving as supervising professor and for his helpful suggestions
and encouragement during the course of this investigation. He also would
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ABSTRACT

A comparison is made of open and closed loop applications of a
second order guidance algorithm, using the minimum distance strategy. A non-
linear reoptimizaticn procedure is used as the ideal guidance history. The
system model used for the comparison is a low-thrust vehicle performing a
minimum time, three-dimensional, heliocentric Earth-Mars transfer.

For the example problem considered, closed loop guidance proves to
be much more accurate cn satisfaction of the final state than the open loop
procedure. On the other hand, closed loop guidance proves to be much more
vulnerable to perturbation by highly nonlinear regions in the trajectory.
Finally, the results indicate that for this problem the best loop closure in-

terval is at each integration step, about one day, or more often, if possible. ,
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LIGT OF SYMBOLS

The following list tabulates all significant symbols used in the

main text.

tion number

MATRICES:

Each symbol is accompanied by a brief description and the equa-

where the symbol is introduced.

,‘g The size of a matrix is ir icated in the statement immediately

i e

(A]

[X(t,tf)]

[X,(tyte)]

[X,(t,t.))

[,

[A,]

[Ay]

(a,)

’ (’(#Oti"

following the symbol. The following specific indices are used.

- number of state variables
- number of control variables

- number of initially specified constraint relations

number of terminal constraint relatiomns

nxn matrix of partial derivatives

2nx(n+q) matrix of partial dsrivatives resulting from the n+q
backward integrations of the 2n vector of perturbation equations

nxn submatrix of [X(t,tf)]

nxq submatrix of [x(t,tf)]

nxn submatrix of (x(t,tf)]
nxq submatrix of [x(t,tf)]
mxn matrix of gain functions
mxq matrix of gain functioms
mxn matrix of gain functions
mxn matrix of gain functions

2nx2n matrix of partial derivatives resulting from the 2n forward

- integrations of the n vactor of perturbation equations

A . ‘#‘i’
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» ﬂ_

[+i(t,l1)] n u cubmatrix of [w(t,l1)] i = 1,2,3,4 -

VECTORG :
All vectors are column vectors unless otherwise noted. The vector

size is indicated in the statement immediately following the symbol.

Hhl

n-vector of state variable derivatives
F 2n-vector of state variable and Euler-Lagrange variable derivatives
h (n+1)-vector of terminal constraint relations

M g-vector of specified terminal constraint relations

I o ¢

u m-vector of control variables ‘
X n-vector of state variables .
z 2n-vector of state variables and Euler-Lagrange variables

A n-vector of time dependent Lagrange multipliers

v q-vector of constant Lagrange multipliers

P L

p (n-gil)-vector of terminal constraints

SCALARS :
¢ propellent exhaust speed relative to vehicle

H variational Hamiltonian

I auxiliary functional to -be extrsmized

J performance index

K terminal constraint cbtained from variational analysis

" instantanecus mass of wehicle
n_ initial mass of vehicle

ey ,‘z.» - I L. N - -
T R A &
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. . -T -
P auxiliary functional equal to ¢ + v M

“ r instantaneous radial distance of vehicle from origin of heliocentric
coordinate system

B L

t independent variable, time
T thrust of the ion engine
B constant mass ejec“ion rate

u gravitational constant for the Sun

g —

¢ performance index

SUPERSCRIPTS :

(") differentiation with respect to time

g e R » e o

q
( )T metrix transpose

( )-! matrix inverse ‘(—

( )* indicates evaluation on the reference trajectory

K SUBSCRIPTS :

( )o evaluation at the initial time

( )¢ -evaluation at the terminal time ;
( )1 evaluation at some time whil~ the mission is in progress |
() Mars :
()p Earth |
ABBREVIATIONS : .

AU  astronomical unit
WG minimum-distance guidance
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1. INTRODUCTION

1.1. Preliminary Description

As man extends his horizons to include exploration of the solar sys-
tem, large mission durations are encountered which would present some prob-
lems for a manned spacecraft. A logical step would be to shorten these mis-
sion durations (transfer times) with the use of some additional thrust during
the transfer. The most likely candidate for this additional thrust is a low-
thrust, continuous operation engine. This might be an ion or plasma-type
engine. The force produced by this thrust requires the development of a
method to control the direction of thrust so that the terminal conditions of
the mission will be satisfied. This type of mission would be characterized by
four phases; a) ascent and escape phase, b) midcourse phase, c) approach
phase and d) terminal maneuver phase.

The midcourse phase is a heliocentric transfer with the spacecraft
engine thrusting continuously at some low level. For the class of trajector-
ies that does not contain coast periods, it is desirable to minimize the
trans er time. This will allow a minimum amount of fuel to be carried through
the ascent and escape phase. The constant magnitude thrust can be controlled
in direction so that the transfer time is a minimum. The purpose of this
study is not to look at different trajectories but to compare the performance
of two guidance algoritame on the same trajectory. A nominal minimum time
transfer trajectory and the associsted control can be generated and stored

before the comparison is started. This nominal trejectory was Zenerated by

Hart (1) and is covered in detail there.




set of control changes nccessary to get the spacecraft be- “o the nominal
path after an off-course or off-nominal condition is rr- ognized. Hart (1)
and others indicate that rather than trying to get back on the nominal path,
one should find a new optimum path to satisfy the mission ana conditions.

In the absence of an onboard computer capable of carrying out a total trajec-
tory reoptimization, one might use a guidance routine. There are several al-

¢ gorithms under consideration for this type of problem. All of these methods

are derived from the Calculus of Variations. A general comparison of several

algorithms which might be used for a reoptimization approach was made by

[P ST

Lewallen (5). The guidance algorithm considered in this study was presented
by Hart (1), along with several others for comparison. In Hart's study, the
% minimum distance guidance algorithm was found to be the best among those he

!
; considered. To the author's knowledge, all of the previous work done with ,7

S

the minimum distance guidance algorithm has been carried out employing the

algorithm in an open loop form. This study applies the minimum distance

( guidance techn.ique in both open and closed loop forms and compares these re- i
o sults. The basis for comparison is the result of the nonlinear reoptimiza- ,

.~

tion procedure used by Hart (1). The state history generated by the minimum jo
;@'f distance algorithm and that generauted by the nonlinear recptimization pro- N
cedure are compared to try to determine the performance of the closed loop

versus the open loop application.

Severel problems encountered in the application of the method are
discussed. The oomparison of the open and closed loop analyses consists of
calculations based on perturbations in position and velocity components st
several points along the trejectory. At each of these points, different loop
closure perioc: are compared. Irom this inforwation, some optimum wvalue for
pmmmaum n.m;m.umw




loop analysis proves tn be hetter, then some optimum value for the loop clo-

sure period will be sought.

1.3. Notation Convention

All vectors are assumed to be colun.i vectors and will be denoted
by a bar; 1i.e., X s z . All matrices will be denoted by brackets; i.e.,
[a) . [H;;] . The superscript T indicates the transpose of a vector or
matrix, and the superscript -1 indicates the inverse of a square matrix.

All first partial derivatives of scalars with respect to a vector are now

vectors and are denoted as:

H _ _ [sH  3H 3H
— H G bk ow T
Ix \ 1 2 n
All second partial derivatives of scalaws with respec’ ctors are mat- {7

rices, i.e.,

mxu ter Hx u~
- o | *1"1 1'm
lf H:] ) (a oH ) R .
= = == = ¥z * } : :
dudx lau ax TR ’
' L% a% |

All first partial derivatives of vectors with respect to vectors are matrices

formed in the following manner:

- -
u...y

; x, =, \

3 . .

- = ) - ; :
b R
b S

The variation of x is demoted by &x and the total change in x is denoted
by x. Ingesral, Ax - &x ¢+t where X s 5.

hoanstl T
T

. .
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?. MATHLMATICAL MODIL

The nominal trajectory employed in this study is a minimum time,
low-thrust heliocentric transfer from Earth to Mars. The equations of motion
describing the trajec ..y are expressed in terms of a heliocentric rectangu-
lar coordinate system, Xy o Xg o9 Xo oo The X axis coincides with the

line of the ascending node of Mars, the Xe axis lies in the ecliptic plane

and the X axis coincidos with the angular momentum vector of the Earth

with respect to the Sun. For simplicity, the spacecraft is given the velo-

city of the Earth at ‘he beginning of : mission rather than escape velocity

relative to the Farth. Gravitational effects of the Earth are then neglected.

Details of the arrival at Mars will be determined by specific mission require-

ments. For the problem under consideration, the end conditions are taken to R
be the position and veloci‘y of a point on the orbit of Mars at the final

time. o

Gravitational effects of Mars, along with perturbing effects of the

other planets, have been neglected although these forces would have to be in-

cluded in an actual mission analysis. These forces are neglected so that the

P

effects of the guidance method can be studied without complications due to

the effects of small perturbing forces in the system.

The orbit of Mars is assumed to be an ellipse with an eccentricity

e g o 5t strn s TINS5t A -

of e = .093393 , a semi-major axis of a = 1.523691 AU (Astronomical
Units) , and an angle of inclinntion of i = ,022289 radians . The argu-

o e

ment of perihelion is taken to be 4.9932927 radians , and for the coordinate

systom employed, the argument of the ascending node is 0.0 . This mod-i is
the same as that used by Fowler (3), Hart (1) and others.
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3. GUTDANCE ALGORITHM

3.1. Jecond Order Guidance Procedures

The minimum distance guidance algorithm and the perturbation func-
tions guidance algorithm are both based on the second variation of the Cal-
culus of Variations. Both procedures calculate the same guidance information.
The difference between the two procedures is the point at which the infor-
mation is applied on the trajectory. Hart (1) gives a more detailed treat-
ment of several second order algorithms.

The differential equations describing the system to be controlled

are
x = F(x,u,t) (3.1.1)
where N |
X is an n-vector of state variables, '
u is an m-vector of control variables, ‘
t 1is the scalar independent variable, time, and
f is an n-vector of known functions. e '
Assume that a nominal trajectory has been obtained which minimizes a perfor- SRR

s

mance index

J o= (x(tg),ty) (3.1.2)

and satisfies the terminal constraints
ﬁ(i(tf).tf) = 0 (3.1.3)

where ¢ is a scalar quantity evaluated at the terminal time and ¥ is a
q~vector of terminal constraints.

This trajectory wust satisfy certain differential equations; these are




XY
7
x = E(x,u,t) (3.1.4) ’
X o= -HS (3.1.5)
X
H- = 0 (3.1.6)
u

For t, St st where X is an n-vector of multipliers, and H = XT% .

Formulation and solution of this problem is based on a Calculus of Variations
approach. Since i(to) and t = are known, Equations (3.1.4) through (3.1.6)

and subject to the following boundary conditions:

At t
o]
i(to) = §O (3.1.7)
At tf
_ . i i }-
M(x(tf),tf) = 0 (3.1.8) j
]
-7 _ -Te o
A(te) = (gt Mx)tf (3.1.9) ;
GTE+ ¢, + VH) = 0 (3.1.10)
t tite h '
' ’
After considering a perturbation of the nominal trajectory due to changes in
initial and/or final conditions, Equations (3.1.4) through (3.1.6) become . v
4 (8x) = [Hs=]6x + [Hz=]6u . (3.1.11) g
dt Ax Au ;
d i .
b - - x - - o u - - oo .}-“ﬁ“." ,‘-
IF (85) = -[H.-])8x - [Ho-16U - [Hs 16X (3.1.12) I~

(3.1.13)

"
o
L ]

[ua’-‘lsi + [uﬁlca + [aﬁx]cx

The boundary conditions, Equations (3.1.7) through (3.1.10), become

Gi(to) s c§° : - (8.1.14)




. M. = {[M-]ex + [M)—(]fdt+Mtdt}tf =0 . (3.1.15)

A total variation of ﬁ(i(tf),tf) rather than a partial variation must be

considered since the final time, ty 5 as well as %(tf) is allowed to change.

Thus,
§%. = {[P-=16% + ([P--1F + (P.)T + BD)dt + [M-]1TdS}.  (3.1.16)
f XX XX tx X X tf T
{GXT? + (H- + P -)8x + (H + P -F + P )dt + aTH } = 0 (3.1.17)
X tx t tx tt” £ tf
where P = ¢ + GTﬁ .

This set of Equations, (3.1.11) through (3.1.17), must be satisfied over the

entire trajectory, for tof tsf tf . ;
&
Now, assuming that [Hﬁﬁ] is nonsingular, Equation (3.1.13) can be 1
solved for &u to give
- = - . -1 — - —_— - *
Su [Huu] {[Hux]Gx + [HuA]GA} . (3.1.18)

Using this result, 6&u can be eliminated from Equations (3.1.11) and (3.1.12).
This will vield a set of 2n first order linear differential equations, with
time dependent coefficients in 6x and &)X . For simplicity, let this sys-
tem of 2n equations be written as i

- A (t) ¢ A () o
A L8] - |l iceteifyeee] BOX, (3.1.19)
dt (si ) AlE) A, 1) fGX )

'
[}
]

where

A, ()] = [Hg) - lﬂxﬁllﬂa;l'liﬂail ,

(Ayt)) = -(Hg=)lHoo)"BlHog)

SR
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[Aii(' )] "[H;(;(] + [“ia][“a&]_ l [liax] s dnd

(A, ()] -[Hzz] + [Hiﬁ][HﬁG]—l[HﬁX

Numerical integration of Equation (3.1.19) with proper boundary con-
ditions will now determine &6x and 6X . These results can be used in Equa-
tion (3.1.18) to evaluate the control variation history, 6éu(t) . The bound-
ary conditions can be obtained from Equations (3.1.15) through (3.1.17). The
n+g+l equations contain the 2n+q+l unknowns dif , fo , Av and Atf .
If the n+qtl equations are linearly independent, then there are n indepen-
dent quantities among the unknowns. Therefore, if n of the unknowns are

chosen arbitrarily and independent of one another, the 2n+q+1 unknowns are

unique determined. Choose the q components of Av and n-q of the compo-

nents of dif as the arbitrarily chosen unknowns. By specifying each of

these values, all 2n+1 components of Gif . Gif and At_. can be determined.

f

This now allows backward integration of Equation (3.1.19) from t_. to t_ .

1

h

The value of t, may be any arbitrary value in the interval t_ <t

<
1 o <t

1 £°

The n arbitrarily chosen unknowns and the q components of Aﬁf are
all specified quantities at te - Combining these vectors will give an n+q
vector of specified quantities. Equation (3.1.19) is now integrated n+q
times with n+q linearly independent starting conditions. The n+q vectors
of solutions for éx(t) and &8A(t) form a (2nxn+q) transition matrix.

After some manipulation the desired solution for &éx(t) and 6A(t) is ob-

tained.
(.é%m. _ LNl o e
6A(t) ( 3 t 5 (3.1.20)
.f’.‘.;*a:f.flif....."; :fs;ﬁff. (tyotp)] | [SCe)
“qm e g\ ok

R,
S

s
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10
where [xi(t,tf)] is an n°'n matrix, '

[x2(t,tf)] is an n-q matrix,

[xs(t,tf)] is an nx*n matrix,

[xu(t,tf)] is an nxq matrix,
. 0 is a gxn null matrix, and
i qxn
f Iqu is a gxq identity matrix.
i
; When Equation (3.1.20) is substituted into Equation (3.1.18), the control var-

iation, 6u(t) , in terms of the state error, Gi(tl) , and terminal constraint
error, Aﬁf is obtained. Making this substitution and rewriting gives the

following guidance equation

: su(t) = =[A, (t),A(t)] A
§ 1 (3.1.21)
) - - — - .
) Dol L I 17 g (e at] | oRGe) o
. Q_ qxn : gxq J ( AMf }
;i« where i '
[Ai(t)] = [HGG]'I{[Hﬁillxl(t.tf)] + [Haxl[xa(t,tf)]} s [
and ’
:
[}\2(1:)] = [Haa]-l{lﬂa;-‘] [x2(t’tf)] + [Hﬁxl[x“(t,tf)l} . -
After the nominal path has been determined which minimizes f-'.;
A s

J = 0(§(tf),tf) and satisfies the necessary boundary conditions, the com-

putational procedure for this algorithm can be summarized as follows:

B I .4 LN \ et N ' .- | ‘
N Tal D . . ‘ |
% i v . - .

P Lt . ---'...‘?'-:' . e
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» *

e
[,

1. Solve the n+g+i1 Equations (3.1.15) through (3.1.17) n+q
times. From the solutions of these equations, ntq initial
conditions are obtained for the integration of Equation

(3.1.19).
2. Now integrate Equation (3.1.19) ntq times from T to
t1 . Store the integrated values at each step.
3 3. The gain matrices, [Al(t)] and [Az(t)] can now be eval-

. o

uated. Substitute these results into Equation (3.1.21) to
give the control variation history, S&u(t)

e tom

This presents a general algorithm for generating second order guid-

v eEw AN

ance information. The perturbation functions approach and the minimum dis-

tance procedure differ only in the way this guidance information is applied.

[

3.2, Variations in the Procedures

The state variations for the perturbation functions guidance al- C b
gorithm and the minimum distance algorithm are determined in the same manner.
For the control variation, however, the calculation is the same, but the guid- o
ance information is applied in a slightly different way.
L ‘ In the minimum distance guidance algorithm, an index time is used

for calculating the gain matrices which minimizes a metric function of the F)

difference between the current perturbed states and the states on the nomi-

nal trajectory. In other words, the index time is taken to be the time of

-

the closest point on the nominal trajectory. The perturbation functions

t

guidance algorithm uses the time based on the time of the perturbation on
the nominal path for calculation of the gain matrices. This procedure was
originally proposed by Powers (2) and is covered in detail in Hart (1). The

correctio to the time for calculation of the gain matrices is given as
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L R e vy (3.2.22)
izt x. (x, - %, ) -~ =.*
1 1 1
c C e

where

( )c indicates evaluation at the current time and

( )* indicates evaluation on the nominal path.
This calculation is based on the position only, as indicated by the summation
from four to six. A value of At 1is calculated at each point along the nom-
inal path beyond t1 . The index time, whici. is used for calculating the
gain matrices, is now determined by t, + At The nominal state variables
at this index time are used to calculate the gain matrices. In order to make
an evaluation of the performance of the algovithm, the guidance information
obtained from the technique is added to the nominal control program. The
nonlinear equations of motion are then integrated, using this augmented con-
trol history as the control program. This integration gives the state his-

tory.

3.3. Closed Loop Application of the Algorithm

The previous section covers only open loop control, using the min-
imum distance guidance procedure. A closed loop modification of this algo-
rithm is now considered. The procedure remains basically the same as far
as solution of the n+q+1 Equations (3.1.15) through (3.1.17) and the back-

ward integration of Equation (3.1.19) from te to t The gain matrices,

1 Ld
[Ai(t)] and [A2(t)] » are now evaluated. This allows calculation of the
control variation history and the state variation history. The guidance

deviatirne oredicted at t, are now added to the nominal guidance history.

. The nonlinsar equations of motion for the vehicle are integrated using this

“
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augmented guidancee information. At thin point, rather than allowing the puid-
ance information to be used throughout the rest of the mission, one can cre-

ate a closed lnop system to update the guidance. The guidance loop is closed

at periodic intervals by evaluating the state errors at this time. The gain

matrices

are then re-evaluated. A new control variation history is calcu-

lated, along with a new state deviation history. The new augmented control

history 1

tegrated.

s formed, and the nonlinear equAations of motion are once again in-

The advantage of this closed loop method is that it continually

updates the control variation history as the mission proceeds. The computa-

tional procedure for the minimum distance algorithm, open and closed loop

can be summarized as follows:

1.

7.

Golve the n+q+l Equations (3.1.15) through (3.1.17), ntq
times. From the solutions of these equations, n+q initial
conditions are obtained for the integration of Equations
(3.1.19).

Now integrate Equation (3.1.19) n+q times from te to t, .
Store the integrated values at each step.

Evaluate the gain matrices, [Al(t)] and [A2(t)] , using

the states for the closest point on the nominal trajectory.

Substitute [Ai(t)] and [Az(t)] into Equation (3.1.21) to
give the control variation history, é&u(t) .

Evaluate the state variation history, 6&x(t) from Equation
(3.1.20).

Form the augmented control history and integrate the nonlinear
equations of motion using the new control.

a. If the control is to be open loop, the algorithm is fin-
ished.

b. If the control is to be closed loop, integrate to the
time of the next loop closure, evaluate the state deviations
and go back to Step 3.
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3.0, umerical Implementat jon
The open and closed loop forms of the minimum distance guidance

algorithm were compared. The performance of each method was referenced to

the ideal guidance history produced by the nonlinear guidance scheme., The

results of this procedure are considered to be the new nominal or ideal guid-

ance history considering the known state errors. By integration of the non-
3 linear equations of motion, position and velocity histories are obtained.
The Euclidean norms of the differences in the position and velocity compo-
nents were computed at each point along the three trajectories generated by
| these methods. The deviations in velocity and position between the minimum

distance techniques and the ideal guidance were then plotted as a function

of time. The open loop form of the minimum distance technigue was found to

S -

perform as indicated by Hart (1). However, it is of interest to discuss some )
. of the problems encountered with the implementation of the closed loop control
e algorithm. One problem area was the period at about 100 days into the mis-

sion when it is necessary to turn the spacecraft around for the deceleration

.f - for Mars rendezvous. The perturbed control causes the time of the turn-around '
. to shift slightly. This time shift, due to the rapid turn-around causes pre- ’
g-v_? dictions of large control changes, as can be seen in Figure 4. These large .-

control changes exceed linearity and cause the algorithm to break down. To

avoid this problem, nominal control is used during the turn-around period.

The second problem area occurs when the spacecraft is nearing the

B T
. 2

final time., At this point in the trajectory, the effect of a control change

s

is small. The algorithm then predicts a large control change to cause the
necessary results. This region is sensed by the increasing magnitude of the
control changes. When these deviations reach a sagnitude of .15 radians,
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nominal control was used cince calcult inons of control could nct be made
within the linear range. This limit of .15 radians was found by trying sev-
eral values. Beyond the time at which a .15 radian control change was «<-=nsed,
predicted control changes quickly approached a value of ahou. 3 radians.

Thisz limit is the same as that used by Hart (1).

3.5. Numerical Methods

porey

Accuracy, time and storage requivements fcr thesn methods are all
highly dependent on the numerical processes invo.red. Matrix inversion and
numerical integration account for the majority of round-off and trurcatinon
errors. The numerical integration routine used in this study is a fourth- ;
order Adams-Bahsforth predictor and a . (fth-order Adams-Moul.on corrector.
A tourth-order Runge-Kutta routine is used as a starter to ontain the initial
and three succeeding derivatives. The dependent variables are carried in
double precision during integration in an attempt to control round-off errors. ' T
Matrix inversion is performed by Gaussian elimination. All numerical calcu- ’
lations were carried out on the CDC 6600/€u400 digital computer in the :“ORTRAN 5
IV language. Storage requirements for the minimum distance algorithm is
4 157,0008 words while the reoptimization (ideal guidance) requires 60 ,000 . .

] words. Computation time for the minimum distance guidance was arsund 12 sec- .

-

onds. The reoptimization (ideal guidance) requires about 15 seconds ~f com-

putation time. ) '
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The first case considered involved a state error of 5¥107° AU/Day
in the %y velocity component. Position deviation as a function of time is
shown in Figure 5, for open loop and closed loop control. The loop closure
periods are 30, 10, 5 and 1 day. A loop closure period of 30 days results
in a larger error at the final time than does the open loop guidance. Steady
improvement is shown, until at a loop closure period of 1 day, the minimum
error in the fipal position for the closed loop method is generated. For
simplicity, none of the plots in this study show complete results below a
time of 80 days. The reason for doing this is that the loop closure period
has very little effect on velocity or position deviations from initiation
until this time is reached. A representative curve is shown in each case for
the general closed loop results, since all of these results look basically
the same.

Figure € gives a summary of velocity deviations between the reop-
timized trajectory and the closed and open loop techniques. The initial state

error is again in the x, (velocity) component and loop closure periods of

1
30, 10, 5 and 1 day are considered. Once again, the 30-day loop closure
period is actually worse than the open loop control with gradual improvement
as the loop closure interval decreases. A loop closure period of 1 day gives
the least error in the final velocity deviation.
Position deviations between open and closed loop control and the

reoptimized for a position error of 5x10~6 AU are shown in Figure 7. This
error occurs in the X, component. The loop closure periods considered are

10, 5 and 1 days. Results in this case are the same as for previous cases in

that the trend is toward increased accuracy with the smaller loop closure

- - 1“
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period,
For all itest cases investigated, the results are comparable.  The
closed loop results show continued improvement over the open loop down to the
minimum loop closure period of 1 day. This limit of 1 day corresponds to
the length of one integration step.
Figures 9 and 10 show results for an error introduced at 65 days
into the mission. The closed loop results appear somewhat better than open
loop, with the errors in positior. corrected more accurately than those in
velocity.
Figure 11 gives a listing of the actual terminal errors for the
analyses shown in Figures 5 through 8. There is actually only a small dif-
ference between open and closed loop results at this point. Figure 12 com- 7
pares the computation time for open and closed loop analyses. There is very
\) ! little difference between the two procedures. This, in effect, means that ) ‘
the closed loop procedure is comparable to the open loop procedure as far as

]
,mt=*! computer costs are concerned.
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Differences Between Final States of
. Reoptimized Trajectory and Minimum Distance Technique
;
1
y
Loop Closure
o 1 Error Period
: Perturbation Position (AU) Velocity (AU/Day) (Days)
§x,(0) = 5.0x1076 AU 1.6854386101x10~"% | 1.3356785238x10~3 Open Loop
" 7.5959967022x107°% | 7.5581577845x10"3 1
" 7.5959967022x10”5 | 7.5581577845x10" 3 5
" 1.3712271024x10"" | 1.116533582ux10"% 10
b
- §x,(0) = 5.0x107% AU/Day | 1.6388290871x10™% | 1.2626050427x10~2 Open Loop
ia
o 7.1368155158x1075 | 6.8088261401x10" 3 1
o 1.009391032ux10"" | 8.7410210064x10~3 5
1.30375313u2x10""% | 1.0469032389x10~2 10
1.6468665832x10"" | 1.2406315644x10™2 30

'

Figure 11.
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Velocity Perturbation in Xy Component at
Initial Point of Trajectcry:
Loop C%osure Time
Period (Sec.)
.? (Days) )
3 Open loop 11.763
Cd
' 1 12.652
:
é 5 11.980
@
2 10 11.308
3
i 30 11,490
H .
!
§x,(0) = 5.0x10"% AU/Day.
R
> Position Perturbation in x, Component at .
'v
" Initial Point of Trajectory:
E
L Loop C%osure Time )
CA Period (Sec.)
9 (Days) ' Y J
Open loop 11,545 :
1 12,171 .
5 12,143 '
10 12.041 .

8x,(0) = 5.0x10"6 AU,

Figure 12. COMPUTATION TIME REQUIRED
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5. CONCLUSIONS AND RECOMMENDATIONGS

In this study, a comparison of open and closed loop applications of
]

the minimum distance guidance algorithm is presented. The comparison is based
on the differences between the results of these algorithms and the results

generated by a nonlinear reoptimization algorithin. The trajectory used is

for a low-thrust spacecraft on a three-dimensional, heliocentric Earth-Mars

transfer.

5.1. Summary of Conclusions

The major conclusions resulting from this study are:

1) The errors in the final state are somewhat smaller for the
closed loop procedure than for the open loop. However, the difference is not
large enough to indicate a choice of the closed loop procedure over the open

loop procedure.

2) The position errors are somewhat smaller for both procedures
than are the velocity errors at the final time.

3) The errors in the final state seem to become amaller as the
loop closure interval becomes smaller. The results indicate that the choice
of a continuous loop closure would decrease the errors in the final state but
would increase computation time.

4) Reoptimization appears to be the best method of guidance. Con- -
sidering the fact that the terminal errors are still relatively large, the
closed loop procedure has only small merit above the open loop analysis.
Since the computation times are on the same order for the inimum distance
guidance and the reoptimization (ideal guidance), little is gained by using
the second order guidance method. This result is the same as that cbtained

e,
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by Hart (1) in his study.

5.2. Recommendations for Further Study
It is suggested that the study of low-thrust guidance techniques be
extended as follows:
: 1) The results of this study indicate that the nonlinear reoptimi-
% zation technique is much more accurete with only a small difference in compu-

tation costs. Therefore, it is recommended that further effort be directed

o

at perfecting the reoptimization techniques for use in low-thrust guidance.

-

2) An extension of this study should be made to trajectories which
rcontain coast arcs.
In addition, trajectories for which reoptimization is not feasible

i are of interest. An example of this would be the reentry problem.




APPENDIX A
Earth Orbite. Data
Semi-major axis, ar 1.0 AU
Eccentricity, er .016726
: Argument of perihelion, wp 0.0°
A
g Angle of inclination, iE 0.0°
! Argument of ascending node, 0 0.0°
;
!
: Time of perihelion Jan. 3.022307069, 1950
i Period 365.198084 days
[
.E Mars Orbital Data -
. q 5(
"y Sermi-major axis, a 1.523691 AU
* Eccemtricity, e, .093393 ‘ o, ‘
: Argument of perihelion, w 286.07366°
;'.',1
. Angle of inclination, J.m 1.84991° ’
, .,
Argument of ascending node, 0‘ 0.0°
Time of perihelion March 17.490627, 1959
Period 686.868886 days o
Vehicle Thrust Constants -
Mass flow rete, 8 .00108 initial vehicle wass/day T
Exhaust speed, c© .ONS365 AU/day r
Solar grevitational constant, u 2.96007536%10"" AU3/day?

1.0
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Time b fmiocton initiatton 12:00 oo, Jap, oy 1RD

Mincion duration 196.7¢594783 days

The spacecraftr leaves the vicinity of the Larth with position and
velocity equal to that of Larth. The missicn is carried out under the in-

fluence of the inverse gravitational force of the Sun. After o 19%-doy helio~

centric transfer, the spacecraft matches position and velocity with Mars,




APPENDIX B

THE DIFFERENTIAL EQUATIONS OF MOTYON AND

EULER-LAGRANGE DIFFERENTIAL EQUATIONS

.
=

T
= - + —
M COs 1.11 CcOs U2

cos u, sin u
1 2

X
N
"
1
*3'*' © "Su{ € "1“’
x x
N w
+
=|

R uA1 3“4 )
Au = T -5 (Alxu + Azxs + Aaxs)

5 .
§ = 7T " o5 (Agxy +Agr o+ Agxg)

e
]

. LU auxs
e = T -5 (Aixu tAx + )‘3"6) “ 4

The augmented vector, z = (--;"} , is initially
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-1.4835073%10"7
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1.0068717029%101
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